Il logaritmo su C "tagliato"

21/10/2025

Definizione 1 Sia Ω una regione di \mathbb{C} . Diremo che f è un logaritmo su Ω se $f \in H(\Omega)$ e

$$e^{f(z)} = z$$
, $\forall z \in \Omega$. (L)

Osservazione (i) Poiché $e^z \neq 0$ per ogni $z \in \mathbb{C}$, segue che se f è un logaritmo su¹ Ω , allora $0 \notin \Omega$.

(ii) Derivando (L) segue immediatamente che se f è un logaritmo su Ω , allora f è una primitiva di 1/z:

$$f' = \frac{1}{z}, \quad \forall z \in \Omega.$$
 (P)

Esercizio 1 Dimostrare che se f e g sono due logaritmi su Ω , allora esiste $k \in \mathbb{Z}$ tale che

$$f = g + 2\pi i k$$
, $\forall z \in \Omega$.

Definizione 2 Dato $s \in \mathbb{R}$, chiamiamo l'insieme

$$\Omega_s := \mathbb{C} \setminus \{ -re^{is} | r \ge 0 \}, \tag{C'}$$

il piano complesso "tagliato lungo la" (o "privato della") semiretta che parte dall'origine passa per il punto del cerchio unitario $-e^{is}$.

Si noti che Ω_s è definito modulo 2π , ossia,

$$\Omega_s = \Omega_{s+2\pi k}$$
, $\forall k \in \mathbb{Z}$.

Nell'Esercizio 2 del file

http://www.mat.uniroma3.it/users/chierchia/AC310_25_26/logaritmo%20principale.pdf si è visto che la funzione olomorfa

$$\operatorname{Log}_{\Omega_0} \coloneqq \operatorname{Log} \, \colon z \in \Omega_0 \mapsto \operatorname{Log} z \coloneqq \log r(z) + i\theta(z) \in \Sigma\,,$$

dove

$$r(z) := |z|, \ \theta(z) = \theta(x, y) := \operatorname{atan2}(x, y), \ \Sigma := \mathbb{R} \times (-\pi, \pi) = \{z \in \mathbb{C} \mid |\operatorname{Im} z| < \pi\},$$

è un logaritmo su Ω_0 ed *è tale che* Log $x \in \mathbb{R}$ per ogni x > 0. Abbiamo chiamato questa funzione *il ramo principale del logaritmo su* Ω_0 .

Esercizio 2 Dato $s \in (-\pi, \pi]$, definiamo la seguente funzione su Ω_s ,

$$F_s(z) := is + \text{Log}(e^{-is}z), \quad \forall z \in \Omega_s.$$
 (F)

(i) Dimostrare che F_s è un logaritmo su Ω_s e che

se
$$1 \in \Omega_s \implies F_s(1) = 0$$
, se $1 \notin \Omega_s \implies F_s(-1) = i\pi$. (*)

 $^{^1}$ In questo file Ω denota sempre una *regione* di $\mathbb C$.

(ii) Dimostrare che se f è un logaritmo su Ω_s che soddisfi (*) (ossia f(1) = 0 se $1 \in \Omega_s$ e $f(-1) = i\pi$ se $1 \notin \Omega_s$), allora $f = F_s$ su Ω_s .

Definizione 3 Chiameremo la funzione definita in (F), il ramo principale del logaritmo $su\ \Omega_s$ e la denoteremo con $Log_{\Omega_s}\ z$. Le funzioni definite da

$$\log_{\Omega_s,k} z := 2\pi ki + \mathrm{Log}_{\Omega_s} z, \qquad z \in \Omega_s, \qquad k \in \mathbb{Z}, \tag{1}$$

verranno chiamate rami del logaritmo su Ω_s ; si noti che $\log_{\Omega_k,0} = \mathrm{Log}_{\Omega_s}$.

Esercizio 3 (i) Calcolare $\log_{\Omega_s,k} 1$ se $1 \in \Omega_s$ e $\log_{\Omega_s,k} (-1)$ se $1 \notin \Omega_s$. Determinare l'insieme $\log_{\Omega_s,k} (\Omega_s)$.

(ii) Dimostrare che se f è un logaritmo su Ω_s allora, esiste $k \in \mathbb{Z}$ tale che

$$f(z) = \log_{\Omega_{s,k}} z$$
, $\forall z \in \Omega_{s}$.